Bruton's Tyrosine Kinase (BTK): A Key Modulator of the B-cell Receptor (BCR) Pathway BTK is a critical target for B-cell differentiation, activation and signaling and targeting BTK can be a compelling therapeutic modality for autoimmune diseases - BTK is expressed in B lymphocytes, myeloid and mast cells - BTK is essential for B-cell differentiation, activation and proliferation following engagement of B-cell antigen receptor (BCR) - BTK plays a critical role in regulating the activity of macrophages, myeloid cell populations, mast cells, platelets, and osteoclasts. - BTK Inhibition reduces autoantibody levels in collagen-induced arthritis. - BTK inhibition reduces inflammatory cytokines like TNFα, IL-1β and IL-6. #### BTK-inhibitors: Potential indications | B-cell Targeted
Agents | Diseases Being Targeted | |---|--| | Ritxuan (CD20) Ofatumumab (CD20) Epratuxumab (CD22) AME-133v (CD20) PCI-32765 (BTK) Galiximab (CD80) Dacetuzumab (CD40) Afutuzumab (CD20) R788 (SYK) CAL-101 (PI3Kd) Dasatinib (SYK) Veltuzumab (CD20) Belimumab (BLyS) Atacicept (BLyS) Ocrelizumab (CD20) | Rheumatoid arthritis Systemic lupus erythematosus Multiple sclerosis Non Hodgkin's lymphoma Chronic lympocytic leukemia Sjorgren's Waldenstrom's macroglobulinemia Idiopathic thromocytopenic purpura Grave's ophthalmopathy Myasthenia gravis Urticaria Biliary cirrhosis Myositis, dermatomyositis Vasculitis, Wegener granulomatosis Renal transplant rejection Diabetic nephropathies Glomerulonephritis Chronic focal encephalitis Churg-Strauss syndrome Ankylosing spondylitis | # B-cell Targets and Therapies: Multiple Diseases for Potential Intervention Recommendations for Rare Diseases: - Explore orphan autoimmune indication as a fast-to-approval strategy - ➤ Anti-Neutrophil Cytoplasmic Antibodies (ANCA) -Associated Vasculitis - Granulomatosis with polyangiitis - Microscopic polyangiitis - ➤ Polymyositis and Dermatomyositis - Type 1 Diabetes - Characterized by antibodies to islet autoantigens, GAD65, insulin etc - Suppression of immune activation by BTKi may delay onset or better In blue: autoimmune diseases #### PNQ-849: Summary - A potent, selective and reversible BTK inhibitor with a potential "First-in-Class" opportunity for auto-immune diseases - PNQ-617 is a potential back-up for the lead candidate - Composition of Matter Patent covering PNQ-849 and PNQ-617 has been granted in US (US9,233,983) and EU - Superior potency (whole blood) and efficacy in multiple RA models with favorable target engagement duration (24h) - Potential for monotherapy and opportunity for once-daily dosing - Excellent selectivity over other BTK and diverse non-BTK family kinases vs. irreversible inhibitors and other drugs that affect T-cell functions directly e.g. Tofacitinib - Potential for superior long term safety profile in RA and other chronic indications due to lower risk from immunosupression [general and opportunistic infections (e.g., PML, TB) and cancer] as it spares T cells & plasma memory cells while retaining efficacy - Unlike irreversible inhibitors, no potential for 1) covalent protein conjugate adduct formation leading to immunogenicity, 2) drug resistance due to mutation of Cys-481 residue of BTK that forms covalent bonding with the irreversible inhibitors ## PNQ-849: Summary, Contd. - A general safety profile that that could provide a wide therapeutic window - Selectivity vs. diverse 100 kinase and 121 DrugMatrix targets and hERG - Non-mutagenic in mini-Ames test - Well tolerated with dose-related TK profile in 28-day safety study in rat with a NOEL of 180 mg/kg/day - Potential utility in multiple auto-immune diseases (see indications slide) - Explore **orphan autoimmune indication** as a fast-to-approval strategy and then repurpose it for larger autoimmune indications - Position as an alternative to Rituximab (anti-CD20 Ab), a B-cell targeted approved therapy for a number of autoimmune diseases (adverse effects and loss-ofresponse are common with Rituximab) - Ready for IND filing #### PNQ-849: a Best-in-class BTKi **Reversible Inhibition** and superior kinase selectivity vs covalent inhibitors such as Ibrutinib may offer **superior long term safety** in chronic treatment with equivalent/**improved efficacy** ## PNQ-840: Reversible Non Covalent BTK Inhibition - No covalent bond formation no reactive moieties which can form covalent bond - Proposed binding pose different from Ibrutinib and Acalabrutinib #### Proposed binding pose of PNQ compounds compared to Ibrutinib - Ibrutinib's acrylamide moiety approaches Cys481, a key residue responsible for making covalent bond - Docking pose of PNQ-849 indicates binding to a different hydrophobic pocket no interaction with Cys481 ### Reversibility vs. Irreversibility of Inhibition PNQ compounds are reversible potent Inhibitors of both wt and C481S mutant BTK #### Inhibition of C481S-BTK Mutant Better than Ibrutinib | Compound | IC _{so} (nM) | | | |-----------|-----------------------|-----------|------------| | | Wt BTK | C481S BTK | Fold Shift | | PNQ-849 | 2.7 | 22.5 | 8 | | PNQ-617 | 1.5 | 8.4 | 6 | | Ibrutinib | 0.4 | 31 | 80 | Inconsequential shift in potency for PNQ compounds with the C481S mutant of BTK as compared to Ibrutinib ## Superior Kinase Profile of PNQ-849 vs. Competitors | Kinase | Ibrutinib, IC ₅₀
(nM) | ACP-196,
IC _{so} (nM) | CC-292, IC ₅₀
(nM) | PNQ-849, IC ₅₀
(nM) | PNQ-617, IC ₅₀
(nM) | |--------|-------------------------------------|-----------------------------------|-------------------------------------|-----------------------------------|-----------------------------------| | BTK | 1.6 (IH); 0.46 ^{lit-1} | 5.1 ^{Lit-5} | 4 (IH); <0.5 ^{lit-2} | 2.6 (IH) | 0.9 (IH) | | TEC | 77 ¹¹⁶⁻¹ | 93 ^{ut-5} | 6.2 ^{1it-2} | ~3,000* | 51% @ 1 μM* | | BMX | 0.76lit-1 | 46 ^{Lit-5} | 0.7 ^{(it-2} | ~1,000** | 80% @ 1 μM** | | ITK | 10.7 (IH) | >1000Lit -5 | 36 (IH) | >10000 (IH) | >10,000 (IH) | | JAK3 | 16.1 (IH) | >1000 ^{Lit -5} | 31 (IH) | >10000 (IH) | >10,000 (IH) | | SYK | >10,000 (IH) | | 976 (IH);
1,134 ^{lit-3} | >10000 (IH) | >10,000 (IH) | | LYN | 200 ^{lit-1} | >1000Lit -5 | 4401 ^{lit-3} | >10000** | >10000** | | c-SRC | 170lit-1 | >1000 ^{Lit -5} | 1729lit-3 | 46% @ 1 μM** | 60% @ 1 μM** | | LCK | 33 ^{lit-1} | >1000 ^{Lit -5} | 9079 ^{lit-3} | ~10,000** | 26% @ 1 μM** | | BLK | 0.5 ^{lit-4} | >1000 ^{Lit -5} | | >10,000** | >10,000** | | EGFR | 5.5lit-4 | >1000 ^{Lit -5} | | >10,000** | >10,000** | | ABL | 86 ^{lit-4} | | | ~10,000** | 28% @ 1 μM** | | CSK | 2.218-4 | | | >10,000** | >10,000** | | YES | 6.5 ^{lit-4} | >1000 ^{Ut-5} | | >10,000** | ~10,000** | | FLT3 | 72.9 ^{Ut-4} | | | >10,000** | ~10,000** | | FGR | 2.31 ^{Lit-4} | >1000 ^{Lit -5} | | ND | ND | | HCK | 3.67 ^{Lit-4} | >1000 ^{Lit -5} | | ND | ND | | Brk | 3.34 | | | ND | ND | Poor selectivity Moderately selective Highly selective Lit-1: Proc Natl. Acad Sci, 2010, 107, 13075-13080 Lit-2: J. Pharmacol. Exp. Ther. 2013, 346, 219-28 Lit-3: 16th congress of EHA Meeting, **2011** Lit-4: NDA # 205552 Lit-5: ACP-196 (Acalabrutinib)/ASH2015: Abstract#831 IH: Advinus in-house data *Binding or ** activity based kinase panel screening at 1&10 μM ND: Not done ## Profile of PNQ-849: In Vitro Pharmacology | | Potency, IC ₅₀ (nM) | | | | |--|---|---|-------------------------|--| | Parameter | Ibrutinib
Approved: MCL, CLL
(Irreversible) | CC-292
P-I/II (CLL/RA)
(Irreversible) | PNQ-849
(Reversible) | | | hBTK IC ₅₀ (nM) | 1.6 ± 0.4 (Literature: 0.5) | 4 ± 0.7 (Literature: <0.5) | 2.6±0.3 (n=15) | | | Mouse splenocyte IC ₅₀ (nM)
(BCR mediated; 个CD69) | 2.6 ± 1.2 | 15.7 ± 2.5 | 3.9±0.7 | | | Rat splenocyte IC ₅₀ (nM)
(BCR mediated; 个CD86) | 1.24 ± 0.49 | ND | 6.9 | | | Human whole blood IC ₅₀ (nM)
(BCR mediated; 个CD69) | 16 ± 3 | 731 (65% inh. at 10 μM) | 89±37 | | | Mouse whole blood IC ₅₀ (nM)
(BCR mediated; 个CD69) | 136.5±27.6 | ND | 261.3±1.8 | | | BTK phosphorylation in mouse splenocyte IC ₅₀ (nM) | ND | ND | 214±138 | | Potency comparable to Ibrutinib and superior to CC-292 in human whole blood assay # Profile of PNQ-849: In Vitro Pharmacology | | Selectivity | | | | |--|---|--|---|--| | Parameter | Ibrutinib
Approved: MCL, CLL
(Irreversible) | CC-292
P-I/II (CLL/RA)
(Irreversible) | PNQ-849
(Reversible) | | | ITK, JAK3, SYK,
BMX, TEC IC ₅₀ (μM) | 0.011, 0.016, >10,
Lit: 0.0008, 0.08 | 0.036, 0.031, 0.98
Lit: 0.0007 (Bmx);
0.006 (Tec) | >10, >10, >10
~1, ~1* | | | Mouse splenocyte,
TCR mediated cell based
selectivity, IC ₅₀ (nM) | 1700±900 | 4150 | >30,000 | | | Drug matrix screen: list of hits with >50% inhibition (% inhibition at 10 μM) | ND | ND | iNOS (76), Adrenergic α1D
(53), Angiotensin AT2 (90),
Sigma σ2 (52), Sodium
Channel, Site 2 (85),
Transporter, Adenosine (95) | | | 100 Kinase Panel screen at 1 and 10 μM (selection based on relevance) | Literature: hits 14
kinases at 50nM | Lit: hits 4 kinases with IC ₅₀ <50 nM (out of 61 kinases) | Selective in 100-kinase panel
(Approx. >500X over AurA,
Bmx, Src, Tec; >5000X over
the rest) | | # PNQ-849: Summary of Efficacy & PD Studies | | Study | Doses | Outcomes | |----------|--|---|--| | PK-PD | Collagen
Induced
Arthritis
(DBA/1J Mouse) | PNQ 849 -10
mg/kg, PO, BID | PNQ-849 inhibited anti-IgD stimulated CD69 up-regulation on B cells ex vivo in whole blood, post-dosing; effect observed up to 24 h > 50% inhibition 14 h post dosing | | Efficacy | Collagen
Induced
Arthritis
(DBA/1J Mouse) | Therapeutic
treatment (PO)
PNQ-849 1, 3,
10, and 30
mg/kg, BID & QD | Robust efficacy of PNQ-849 on BID & QD dosing Dose-dependent efficacy Supported by reduction in joint histopathology scores and loss of proteoglycan Decrease in serum amyloid A (SAA), IL-6 and anti-collagen IgG levels | | Efficacy | Adjuvant
Induced
Arthritis (Lewis
Rat) | Therapeutic
treatment (PO)
PNQ-849
3,10,30 and 60
mg/kg, QD; CC-
292 30mg/kg, QD | Superior effcacy of PNQ-849 compared to comparator CC-292 • Dose-dependent efficacy • Supported by reduction in joint histopathology scores and loss of proteoglycan • At 30 mg/kg, plasma concentrations were above its whole blood IC ₅₀ for the length of the study | ## PNQ-849: Summary - PNQ-849 is a **reversible**, highly differentiated and efficacious BTK inhibitor - PNQ-849 has demonstrated excellent preclinical PoC in multiple models with a likely best-in-class profile #### Safety pharmacology studies Pulmonary (Rats) Functional Observational Battery (Rats) Telemetry (Dogs) #### All IND regulatory tox studies completed - 28 Day Repeat Oral Dose Toxicity in Rat with TK - 28 Day Repeat Oral Dose Toxicity in Dog with TK - Male fertility studies in rats - NOAEL of 180 mpk (highest tested dose)in rats and 20 mpk in dogs #### Genotoxicity - Ames test - MUT-HGPRT-CHO or MUT-CHAB/HPBL - Micronucleus test (MNT) in rat #### **CMC** - Process optimization completed - cGMP campaign to be initiated PNQ-849 is an IND ready compound # Thank You